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Abstract

The ability to estimate peer effects in network models has been advanced consider-

ably by the IV model of Bramoullé et al. (2009). While such IV estimates work well for

very sparse networks, they exhibit very weak power for networks of even modest den-

sities. We review and extend the findings of Bramoullé et al. (2009) and then propose

an alternative estimator. We show that our new estimator works approximately as

well as IV in very sparse networks and performs much better in networks of moderate

density. To highlight the benefits of our proposed estimator, we provide an empirical

application where we estimate peer effects in individual schools.
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1 Introduction

Estimation of peer effects in networks has undergone enormous growth. Much of this growth

is due to the breakthrough work of Bramoullé et al. (2009) (hereafter BDF) who show that

if we know the network structure–who interacts with whom–and there is enough sparsity of

the network, peer effects are identified. Much of the peer-effect literature is framed in the

Manski (1993) linear-in-means framework,i.e.,my outcome depends linearly on the average

outcomes of my friends. Manski shows that, without knowing anything about the group

structure, the linear-in-means model is not identified. BDF make two contributions. First,

they show that the additional information available from knowing the structure of network

interactions often permits identification. Second, they offer an instrumental variable strategy

for estimating such models.

While BDF prove that identification holds for almost all networks, their simulations show

that meaningful inference is only possible in very sparse networks. For networks with den-

sity above 5%, (the average person is connected with 5% of the network), their instrumental

variables estimation offers very limited power. Our primary contribution is to offer a nonlin-

ear estimator that we show has enormously improved power in denser networks with only a

small departure from nominal size. We also extend and confirm BDF’s Monte Carlo results

on bias and precision, and further frame the issues in the weak instrument framework. (See

Nelson & Startz (1990a,b) and Staiger & Stock (1997))

Much of the practical concern about network density arises in the study of friendship

networks in school, which are typically relatively dense within a classroom or a single school.

BDF use their technique to identify peer effects of recreational activities by middle and high-

schoolers. Their technique has also been used in a number of other papers: De Giorgi et al.

(2010) look at peer effects in college major choice, Lin (2010) looks at academic achievement,

and Fortin & Yazbeck (2015) look at obesity. Calvo-Armengol et al. (2009) use a similar

method to investigate peer effects in school performance. All of these studies use data on

the friendship networks in schools to identify the peer effects.

While some schools are sufficiently large to ensure a low density friendship network,

there are many with densities above 5%. To get around this problem, the previous studies

generate a sparse network by stacking multiple school networks and assuming there is no

interaction across schools. To illustrate the increased power of our proposed method, we

give an empirical example in which we identify peer effects without stacking across schools.

The rest of the paper is organized as follows. Section 2 describes the linear-in-means

model and explains the common method of estimating peer effects. Section 3 provides

some Monte Carlo simulations that highlight the problems with the common method for
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higher density networks. Section 4 proposes an alternative estimation strategy and Section

5 provides simulations that highlight its benefits. Section 6 applies the new method to the

Add Health data and estimates school level peer effects.

2 Linear-in-Means Model

Consider the following model, taken from BDF:

yi = α + β
1

ni

∑

j∈gi

yj + γxi + δ
1

ni

∑

j∈gi

xj + ϵi (1)

ϵi|X ∼ iidN(0, σ2
E)

where gi is the set of friends of person i and ni is the size of gi. We model person i’s outcome,

yi, as a simple average of her friends’ outcomes, yj, an observable characteristic, xi, and an

average of her friends’ observable characteristics, xj . Following Manski (1993), we will call β

the endogenous social effect and δ the exogenous social effect. The endogenous social effect,

or peer effect, can be interpreted as the relationship between an average friend’s outcome

and your outcome. In a classroom setting, we might be interested in the peer effect of test

scores: how your average friend’s test score affects your own score. We assume |β| < 1, as is

standard. The exogenous social effect measures the influence of your friends’ characteristics

on your outcome. If we believe that the education level of a student’s parents affects their

achievement in the classroom, we might also believe the education level of their friends’

parents has an effect. Importantly, we want to separately identify the endogenous social

effect from the exogenous effect. They are both capturing the influence of peers, however

they have very different policy implications. In particular, in many situations the endogenous

social effect creates a multiplier on changes in the exogenous variables.

Following BDF, we can stack the observations and write the model as:

Y = αι+ βGY + γX + δGX + E (2)

E|X ∼ N(0, σ2
EIn)

where G is the adjacency matrix, a row-normalized n× n matrix that describes the network

and ι is an n× 1 vector of ones. The adjacency matrix starts as a matrix of ones and zeros

where Gij = 1 if i is friends with j. Each row is then normalized by its sum so both the

endogenous and exogenous social effects can be interpreted as the effect of an average friend.

Since this is a simultaneous system, in order to separately identify both β and δ we need an
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instrument. To see this, we can rewrite Equation 2 to give the reduced form by collecting

terms on Y :

Y = αι+ βGY + γX + δGX + E

= (In − βG)−1(αι+ γX + δGX + E) (3)

We can write (In − βG)−1 as a series expansion,
∞
∑

k=0

βkGk, so:

Y =
∞
∑

k=0

βkGk(αι+ γX + δGX + E) (4)

=
∞
∑

k=0

βkGk(γX + δGX) +
∞
∑

k=0

βkGk(αι+ E) (5)

= γX +
∞
∑

k=1

βkGkγX +
∞
∑

k=0

βkGkδGX +
∞
∑

k=0

βkGk(αι+ E) (6)

= γX +
∞
∑

k=1

βkGkγX +
∞
∑

k=1

βk−1GkδX +
∞
∑

k=0

βkGk(αι+ E) (7)

= γX +
∞
∑

k=1

(βkγ + βk−1δ)GkX +
∞
∑

k=0

βkGk(αι+ E) (8)

= γX +
∞
∑

k=1

βk−1(βγ + δ)GkX +
∞
∑

k=0

βkGk(αι+ E) (9)

= γX + (βγ + δ)GX + β(βγ + δ)GGX +
∞
∑

k=3

βk−1(βγ + δ)GkX +
α

1− β
ι+

∞
∑

k=0

βkGkE

(10)

If we only use information on X and GX, we cannot separately identify [α, β, γ, δ].

However, since GGX does not show up directly in Equation 2 but it does show up in the

reduced form of GY , BDF propose that the characteristics of the friends of friends (GGX)

can be used to instrument for the friends’ outcomes, GY , and Equation 2 can be estimated

via 2SLS. The structural parameters are identified as long as GGX is not perfectly collinear

with ι, X, and GX.1 Another way of saying this is that there must be some intransitive

triads: second-order friends who are not also first-order friends. The instrument must be

providing some information about GY . While this is true for most networks, the amount

of information decreases as the network gets more dense. As everyone has more friends,

1Generally, for any p > 1, GpX is a valid instrument for GY as long as GpX is not perfectly collinear
with [ι, X , GX ].
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everyone’s second-order friends start to look more and more similar. We show below that

“weak identification” in this context results in biased standard errors but only modestly

biased coefficients. In other words, the classical IV asymptotic distributions are about right

although the estimated distributions are not. The more important issue, correctly identified

by the asymptotic distributions, is that the estimator is of very low power.

2.1 Estimation

Once we have an instrument, estimation proceeds via 2SLS.2 Following BDF, we assume

there are network-specific unobservables, α. To control for these unobservable characteristics,

we apply a within-transformation by multiplying each term by In− 1
n
(ιι′). Note, that this

transformation changes the identification requirement slightly. As proven in BDF, now

the structural parameters are identified as long as GGGX is not perfectly collinear with

[X,GX,GGX].

Define the following:

R = In −
1

n
(ιι′) (11)

W = [RGY,RX,RGX] (12)

Z = [RX,RGX,RGGX ] (13)

P = Z(Z ′Z)−1Z ′ (14)

θ = [β, γ, δ]′ (15)

Then the 2SLS estimator is:

θ̂2SLS = (W ′PW )−1W ′PRY (16)

and the asymptotic variance is:

V ar(θ̂2SLS) = σ2
E(W

′PW )−1 (17)

where σ2 is estimated by

σ̂E
2 =

1

n
((RY −W θ̂)′(RY −W θ̂)) (18)

2Lee et al. (2010) adopted spatial models to allow estimation via maximum likelihood. They show their
method is more efficient than 2SLS, however they are still relying on variation in GGX for identification.
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3 2SLS Simulation Results

To examine the properties of this estimator, we run Monte Carlo simulations. We generate

data from known parameters and then estimate the model in an attempt to recover those

parameters. We will vary the density of the network to see how that affects the estimation.

We follow BDF by setting the network size, N = 240, α = 0.7683, β = 0.4666, γ = 0.0834

and δ = 0.1507. We draw X from a log-normal distribution with mean 1 and variance 3.

For each simulation, we generate a random reciprocal network with the probability of any

link equal to the density. We then row normalize so the weight on each individual’s friends

sums to 1. We also draw the error vector, E ∼ N(0, 0.1). From there, we can generate the

outcome Y according to Equation 3. We simulate 10,000 networks with each of the following

densities: 0.01, 0.025, 0.05, 0.1, 0.2, 0.3.

Figure 1 plots the distribution of the estimated β̂s. As in the BDF findings, the estimates

become imprecise around a density of 5% and there is no meaningful inference for dense

networks, in that the distributions become essentially flat. Note also some increase in bias

as the density increases.

We are mainly interested in inference about β̂, so we construct the following test statistic:

tβ̂ = β̂−0.4666
SE

β̂
and compare the statistic to a 5 percent critical value. Figure 2 plots the

empirical size of this test. At very low densities, the test achieves approximately the correct

size. However, in more dense networks the test is notably undersized.

Figure 1: Distribution of β̂ for varying network densities Figure 2: Size of β̂ for varying network densities

To test the power, we let the true β vary uniformly between [0, 1] and then test the

hypothesis that β̂ = 0.4666. Figure 3 plots the power of the test at specified densities.

Even for the 5% network there is limited power. For densities of 10 percent or larger power
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Figure 3: Power

effectively equals size, meaning there is no information in the test statistic. To investigate

the cause of this low power, we look at the first stage regression:

RGY = π1RX + π2RGX + π3RGGX + V (19)

Figure 4 plots the median F-statistic for the coefficient on the instrument, π3. This shows

that the instrument is very weak for the 5% density network and closely mirrors Figure 3.

Figure 4: First Stage F-Statistic

The normal cause of a weak instrument problem is that the chosen instrument is only

slightly correlated with the endogenous variable (Nelson & Startz, 1990a). Here, the reason

the instrument is so weak is because GGX is highly collinear with [ι, X,GX]. Figure 5 plots
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the log of the median condition number for W ′PW . The condition number is a measure of

collinearity, and numbers above 3.4 (log(30)) are evidence of high multicollinearity (Belsley

et al., 1980). Here we can clearly see the relationship between collinearity, the weak instru-

ment, and the lack of power of the estimates. The reason we are getting weak identification

for higher density networks is because GGX is not providing much new information.

Figure 5: Log Condition Number

3.1 Anderson-Rubin Test

To further investigate the weak instrument hypothesis, we can run an Anderson-Rubin (1949)

test, which should have exact finite sample size up to Monte Carlo error. Figure 6a plots

the size of the Anderson-Rubin test. As expected the test has the proper 5% size across

all densities. Figure 6b plots the power of the Anderson-Rubin test by varying the true

β uniformly between [−1, 1] and setting β0 = 0. This shows the well known fact that the

Anderson-Rubin test has limited power. However, a comparison to Figure 3 shows that the

power of the Anderson-Rubin test is not much worse than the power of 2SLS. This, together

with the multicollinearity results, suggests that the difficulties with instrumental variable

inference in denser networks reflect a low information content rather than a failure of the

usual asymptotic approximations.
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(a) Size (b) Power

Figure 6: Anderson-Rubin Test

3.2 Size with True Error Variance

To investigate the causes of the test being undersized, we recompute the standard errors

using the true error variance, σ2, in place of the estimated error variance. Figure 7 plots

the size of the test for both standard 2SLS and using the true σ2. When we use the true

error variance, the test has proper size, suggesting that the reason 2SLS is undersized is

that it is overestimating the error variance. Thus the asymptotic distribution gives a good

approximation to the empirical distribution with N = 240.
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Figure 7: Size with True Error Variance

4 Alternative Estimation Strategy (Residual Series Ex-

pansion Estimation)

As seen in the previous section, any estimation strategy that relies on variation in GGX will

have difficulty with dense networks. To avoid this, we exploit another part of Equation 10

to identify β:

Y = γX + (βγ + δ)GX + β(βγ + δ)GGX

+
∞
∑

k=3

βk−1(βγ + δ)GkX +
α

1− β
ι+

∞
∑

k=0

βkGkE

= γX + (βγ + δ)GX + β(βγ + δ)GGX (20)

+
∞
∑

k=3

βk−1(βγ + δ)GkX +
α

1− β
ι

+ E + βGE + β2G2E +
∞
∑

k=3

βkGkE

Notice that β shows up in the series expansion of the error term. The goal of our strategy

is to estimate β from this series expansion. To do this, we must first get a good approximation

of the error term. Since E is uncorrelated with X, the regression of Y on [ι, X,GX,GGX]
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will generate the best linear predictor of Y .3 As we have already seen, the omitted higher

order terms are highly correlated with the included terms. Because the higher order terms

are projected onto the included terms, and also because powers of β fade toward zero, the

residuals will approximate the series expansion with E .

Y = λ0ι+ λ1X + λ2GX + λ3GGX + η (21)

e = Y − Ŷ =
∞
∑

k=3

βk−1(βγ + δ)(GkX − µ0k −
3
∑

l=1

µlkG
l−1X) (22)

+ E + βGE + β2GGE +
∞
∑

k=3

βkGkE

≈ E + βGE + β2GGE +
∞
∑

k=3

βkGkE (23)

where the µ coefficients come from the projection of the higher order terms onto the

included terms,

∀k ∈ {3, . . . ,∞} GkX = µ0kι+ µ1kX + µ2kGX + µ3kGGX + ν (24)

The key for recovering a good approximation of Equation 23 is that the omitted higher

order terms are well approximated by the included terms, in other words, that the R2 of

each Equation 24 is high.

Multiplying Equation 23 by G gives,

Ge ≈ GE + βGGE + β2GGGE +
∞
∑

k=3

βkGk+1E (25)

and by combining Equations 23 and 25 we can write,

e = βGe+ E (26)

The least squares estimator of β in Equation 26 is biased since Cov(Ge, E) ̸= 0, but we

can explicitly write out the probability limit of the OLS estimator.

plim[β̂OLS ] =
Cov(e, Ge)

V ar(Ge)
(27)

We evaluate Equation 27 by writing out the numerator and denominator and then taking

3Any subset of GpX will also work, see Subsection 4.1
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advantage of the fact that E is the only source of uncertainty and that σ2 cancels between

the numerator and the denominator. This leaves β as the only unknown. After dropping

high-order terms in the expansions we solve numerically for β.

Cov(e, Ge) = Cov

((

E + βGE + β2GGE +
∞
∑

k=3

βkGkE
)

,

(

GE + βGGE + β2GGGE +
∞
∑

k=3

βkGk+1E
))

(28)

=
∞
∑

i=1

∞
∑

j=1

βi+j−1Cov(GiE , GjE) (29)

=
∞
∑

k=0

βk

k
∑

l=0

Cov(GlE , Gk−l+1E) (30)

and

V ar(Ge) = V ar(GE + βGGE + β2GGGE +
∞
∑

k=3

βkGk+1E) (31)

=
∞
∑

i=1

∞
∑

j=1

βi+j−2Cov(GiE , GjE) (32)

=
∞
∑

k=0

βk

k+1
∑

l=1

Cov(GlE , Gk−l+2E) (33)

Rearranging Equation 27 and combining on β, gives us:

Cov(e, Ge)− plim[β̂OLS ]V ar(Ge) = 0

(34)

⇒
(

∞
∑

k=0

βk

k
∑

l=0

Cov(GlE , Gk−l+1E)
)

−
(

plim[β̂OLS]
∞
∑

k=0

βk

k+1
∑

l=1

Cov(GlE , Gk−l+2E)
)

= 0

(35)

⇒
∞
∑

k=0

βk

(

k
∑

l=0

Cov(GlE , Gk−l+1E)− plim[β̂OLS ]
k+1
∑

l=1

Cov(GlE , Gk−l+2E)
)

= 0

(36)

which is a polynomial with respect to β. Since
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Cov(GpE , GqE) ≈
∑

diag(Gp ∗Gq)

N
σ2
E (37)

we can approximate the polynomial and solve for its root, which will be our estimate of

β̂RSEE. Since Equation 36 is an infinite series, we need to choose an expansion point. Our

testing has shown that k = 3 works well in practice, so the formula becomes:

plim[β̂OLS] ≈ β+
Cov(E , GE) + βCov(E , GGE) + β2Cov(E , GGGE) + β3Cov(E , GGGGE)

V ar(GE) + β2V ar(GGE) + 2β2Cov(GE , GGGE) + 2β4Cov(GGE , GGGGE)
(38)

4.1 Number of Terms in First-Stage Regression

As previously shown, the goal of the first-stage regression is for the residuals to approximate

the series expansion of E . Because we include a small number of terms in Equation 21, the

residuals might not be a good approximation. However, due to the collinearity between the

various powers of the adjacency matrix, there is not much new information in the higher

order terms. Figure 8 plots the squared correlation coefficient between the residuals and the

true series expansion of E for three different first-stage equations. While only including two

terms does worse, especially for low density networks, there is hardly any difference once we

move beyond four terms. The first-stage equation is doing a very good job of approximating

the error term.

Figure 8: Comparison of First-Stage Equations

13



4.2 Standard Error Estimation

Standard errors can be estimated either via the delta method or by the bootstrap. Notice

from Equation 38 that we solve β̂OLS = f(β), for some implicit function f . Therefore

β̂RSEE = f−1(β̂OLS) and we can apply the delta method:

√
n
(

f−1(β̂OLS)− f−1(β)
)

D−→ N
(

0, σ2
β̂OLS

[f−1]′(β)2
)

⇒
√
n
(

β̂RSEE − β
)

D−→ N
(

0,
σ2
β̂OLS

f ′(β)2

)

Alternatively, we generate bootstrapped standard errors. For an estimated β̂RSEE, we

construct Y −β̂RSEEGY and regress this on [ι, X,GX ]. Since this is no longer a simultaneous

system, we can get estimates of α, γ, and δ via OLS.

Y − β̂RSEEGY = αι+ (β − β̂RSEE)GY + γX + δGX + E (39)

From these estimates, we generate residuals.

J =
(

Y − β̂RSEEGY
)

−
(

α̂ι+ γ̂X + δ̂GX
)

(40)

We then multiply the residuals by either -1 or 1 and reassign them to a new observation

(with replacement). With the new residuals, we compute a new Yb and then estimate a new

β̂.

pi ∈ {−1, 1} (41)

E b
j = Jipi (42)

Y b = (In − β̂RSEEG)−1(α̂ι+ γ̂X + δ̂GX + E b) (43)

⇒ β̂b
RSEE (44)

Doing this a number of times gives a distribution of β̂, and to construct the hypothesis

test, we take the 2.5th and 97.5th percentiles of the distribution and see if the true β is

contained in that region.
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5 Simulation Results

We use the same simulation conditions as in Section 3 and estimate β̂ using both 2SLS and

RSEE. Figure 9 plots the distribution of the estimated β̂s.

Figure 9: Distribution of β̂

The RSEE estimates are very similar to 2SLS for very sparse networks and are signifi-

cantly more precise for more dense networks. Figures 10 and 11 show the size and power,

respectively. While 2SLS tests are undersized, our alternative tests are oversized. This is less

so for the bootstrap tests, which have close to nominal size for moderately dense networks.

For power, RSEE does much better, especially for more dense networks. For example, for

networks with a 10 percent density the standard 2SLS tests are essentially uninformative

against an alternative of 0, with size equal 0.021 and power equal 0.029. The bootstrap

version of our new estimator has empirical size and power of 0.081 and 0.67, respectively.

It is often useful to consider size-adjusted power when evaluating a proposed estimator.

To do this, we calculate the 2.5th and 97.5th percentiles of the empirical t-distribution. These

correspond to the empirical critical values for that test. We then use those critical values

when computing the power. Figure 12 plots the size-adjusted power. On a size-adjusted

power, the bootstrap inference is much preferred to 2SLS results.
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Figure 10: Size

(a) Low Density (b) High Density

Figure 11: Power
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(a) Low Density (b) High Density

Figure 12: Size-Adjusted Power

While it is clear that the RSEE has much more power, we might be concerned that we

gain this power at the expense of more bias. Figure 13 shows the comparison of the median

bias.

Figure 13: Median Bias

Both estimators become quite biased for very dense networks, however, the bias of RSEE

is comparable to 2SLS for reasonably sparse networks.
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5.1 Standard Error Estimation

The estimated standard errors from the alternative method are too small when we use the

delta method. This is likely because this is for a second stage with generated regressors, since

Equation 27 is a function of the residuals, e, which are a product of Equation 21. To test

this, we plug in the true (series expansion of) error terms into Equation 27 and re-run the

delta method. Figure 14 plots the size of both the original delta method and that without

the generated regressors. This is evidence that the delta method is not providing accurate

standard errors because of a generated regressors problem.

Figure 14: Comparison of Delta Methods

On the other hand, the bootstrap seems to be providing much more reasonable estimates

of the standard error. Figure 15 shows the distribution of the bootstrapped standard errors

relative to the empirical standard deviation. Here we can see the bootstrap is doing a

reasonable job of approximating the standard error.
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Figure 15: Distribution of Standard Errors

6 Empirical Application

To illustrate our method, we replicate the empirical results from BDF and then estimate

peer effects for each school in the BDF sample. Following BDF, we use the In-School sample

fromWave I of the National Longitudinal Study of Adolescent to Adult Health (Add Health).

This is a nationally representative sample of 80 high schools and 52 middle schools. Each

student in the sample was asked to fill out a questionnaire with questions pertaining to social

and demographic characteristics, school activities and behavior, and parent education and

occupation. The questionnaire also asked each student to list up to five male and five female

friends. This friendship elicitation is used to construct the network.4 The dependent variable

is an index of participation in recreational activities and the covariates include characteristics

of the student as well as their parents. We present a preliminary replication of the estimates

from BDF, differing in that we have approximately 10,000 more observations. Table 1 shows

that the summary statistics in BDF and our sample are quite similar.

4While the limit of ten total friends means that some friendships might be censored, in practice very few
students list all ten.
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BDF Our Sample
Variable Mean SD Mean SD

Recreational Activities 2.122 1.267 1.823 1.453
Age 14.963 1.682 15.023 1.698
Female 0.535 0.499 0.507 0.500
Race is white only 0.619 0.486 0.578 0.494
Born in the US 0.928 0.259 0.909 0.287
Mother Present 0.929 0.257 0.919 0.273
Father Present 0.779 0.415 0.760 0.427
Grade 6 to 8 0.263 0.440 0.258 0.438
Grade 9 or 10 0.406 0.491 0.407 0.491
Grade 11 or 12 0.331 0.471 0.334 0.472
Parents’ labor force participation 0.965 0.184 0.892 0.310

Mother No HS 0.097 0.296 0.108 0.310
Mother is HS grad 0.284 0.451 0.314 0.464
Mother more than HS but no college 0.276 0.447 0.150 0.357
Mother College grad 0.206 0.404 0.271 0.445
Mother went to school but unknown level 0.066 0.248 0.076 0.265

Father No HS 0.081 0.273 0.087 0.282
Father is HS grad 0.211 0.408 0.224 0.417
Father more than HS but no college 0.240 0.427 0.114 0.317
Father College grad 0.178 0.383 0.259 0.438
Father went to school but unknown level 0.069 0.253 0.076 0.264
Number of Observations 55208 65913

Table 1: Summary Statistics

We follow BDF and construct one large block diagonal friendship network where each

individual school network is placed on the diagonal. By combining all of the schools we

have constructed a very sparse network: in our sample the density is 5.67 ∗ 10−5. We then

estimate the model using 2SLS and RSEE. Table 2 compares the results between BDF and

our sample. Once again, there are some differences between the two samples, with the most

important being that the estimated peer effect in our sample is smaller by a fraction of a

standard error. Most of the other estimated coefficients are also fairly similar. The third

column of results estimates the model using RSEE. There is not much different between

the 2SLS and RSEE coefficient estimates, which is not surprising since it is a very sparse

network. The estimated standard error on the peer effect is smaller by an order of magnitude

when using RSEE.
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BDF Our Sample
2SLS 2SLS RSEE

Variable Coef SE Coef SE Coef SE

Own Characteristics

Age −0.022 0.011 0.083 0.003 −0.053 0.007
Female 0.213 0.015 0.212 0.013 0.183 0.011
Race is white only −0.106 0.020 −0.092 0.016 −0.085 0.013
Born in the US −0.052 0.033 0.057 0.024 0.012 0.020
Mother Present −0.013 0.036 −0.035 0.031 −0.083 0.025
Father Present −0.018 0.029 −0.025 0.026 −0.044 0.022
Grade 9 or 10 0.011 0.096 −0.213 0.032 −0.034 0.031
Grade 11 or 12 0.021 0.102 −0.433 0.036 −0.049 0.038
Mother is HS grad −0.005 0.027 0.049 0.023 0.074 0.019
Father is HS grad 0.047 0.029 0.081 0.025 0.099 0.022
Mother more than HS but no college 0.146 0.029 0.202 0.027 0.230 0.022
Father more than HS but no college 0.167 0.030 0.185 0.029 0.243 0.025
Mother College grad 0.137 0.033 0.298 0.027 0.348 0.021
Father College grad 0.127 0.031 0.278 0.027 0.333 0.023
Mother went to school but unknown level −0.010 0.038 −0.020 0.032 −0.024 0.027
Father went to school but unknown level −0.067 0.038 −0.019 0.033 −0.041 0.030
Parents’ labor force participation 0.083 0.040 0.124 0.025 0.088 0.021

Friends’ Characteristics

Age −0.061 0.020 −0.062 0.017 −0.060 0.004
Female 0.008 0.048 −0.031 0.044 −0.062 0.022
Race is white only −0.019 0.045 −0.067 0.040 0.069 0.021
Born in the US 0.042 0.066 0.041 0.060 0.115 0.036
Mother Present 0.107 0.064 0.158 0.082 0.136 0.056
Father Present −0.109 0.053 −0.125 0.066 −0.151 0.047
Grade 9 or 10 −0.034 0.186 0.021 0.090 0.050 0.039
Grade 11 or 12 0.100 0.194 0.114 0.122 0.267 0.043
Mother is HS grad −0.047 0.050 −0.000 0.060 0.128 0.041
Father is HS grad 0.172 0.055 0.130 0.065 0.216 0.044
Mother more than HS but no college −0.038 0.068 0.155 0.072 0.236 0.047
Father more than HS but no college 0.091 0.067 0.070 0.084 0.283 0.051
Mother College grad −0.031 0.081 0.057 0.090 0.242 0.044
Father College grad 0.124 0.061 0.153 0.083 0.337 0.047
Mother went to school but unknown level −0.094 0.070 −0.072 0.084 −0.013 0.060
Father went to school but unknown level 0.150 0.075 0.261 0.087 0.202 0.062
Parents’ labor force participation 0.151 0.073 0.077 0.067 0.012 0.046

Peer Effect Endogenous Effect 0.467 0.256 0.362 0.154 0.384 0.006

Number of Observations 55208 65913 65913

Table 2: Full Sample Results

To highlight the benefits of our method for less dense networks, we estimate the peer

effects for each school. Figure 16 shows a histogram of the individual school network densities.

Most of the schools are around the 1% density level, but all of them are significantly more

dense than the combined network by a factor of nearly 1,000. For each school we estimate

peer effects using both 2SLS and RSEE.5

5Some of the schools are completely homogeneous in one of the included covariates (Race, Born in US,
etc.) so for those schools that covariate is dropped.
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Figure 16: Histogram of School Network Density

Figure 17 plots the kernel density of the peer effect coefficients. The RSEE estimates are

nicely distributed around 0.3, with an interquartile range of 0.19, while the 2SLS estimates

are quite disperse, with an interquartile range of 0.96. Figure 18 plots the kernel density

of the peer effect standard errors. The RSEE estimates are much more precise, with a

median standard error of 0.087, while the corresponding median 2SLS standard error is 0.60.

This means that for any reasonable estimate of the peer effect (between −1 and 1), 2SLS is

unlikely to be able to reject the null hypothesis of no peer effects. In other words, 2SLS will

be uninformative about peer effects in individual schools.

Figure 17: Kernel Density of Peer Effect Coefficients
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Figure 18: Kernel Density of Peer Effect Standard Errors

Our method will allow for the estimation of individual school peer effects. This is impor-

tant when the unit of interest is an individual school and will allow for testing for hetero-

geneity between schools. A Wald test of joint equality between the individual peer effects

and the full network peer effect (0.384) is strongly rejected (χ2 = 793), which suggests there

is substantial heterogeneity in peer effects between the schools.

7 Conclusion

In this paper we replicate the findings of Bramoullé et al. (2009) and highlight the weak

instrument problem that results in limited power for denser networks. We propose an alter-

native estimation technique that does not rely on a weak instrument and show it performs

much better than 2SLS for dense networks.
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