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tl;dr Goodness-of-Fit Metrics
» User-level targeting is a common use-case for HTE models > Area Under the Uplyft Curve (AUUC)
» We define a new goodness-of-fit metric based on Off-Policy > R-Loss
Evaluation (OPE) » Best Linear Predictor R? and MSE

» We show with synthetic and real data that this new metric

L . : » Inverse Propensity Weighted Transformed Outcome (IPW)
outperforms existing methods on targeting problems

» Weighted R-Loss
Motivation » Upweight users who are near the decision boundary
» OPE (Doubly Robust)

» HTE goodness-of-fit is a challenging problem
» For a hypothetical policy a (e.g. give treatment to top 50% of users)

» Most literature focuses on the Precision of Estimating Heterogeneous Effects

(PEHE) > E[Y — V(a)X=D 4 v(a)]
» E[r—7)
» We don’t observe ground truth, so need to define metric that approximates Syn’rhe’ric Data
PEHE

» A common use-case for HTE models is user-level targeting > Following Powers et al

» N = 3000, split evenly into Train, Val, Test

» For targeting models, we care more about users who are near the decision P 10 features, half standard normal, half Bernoulli(0.5)
boundary » 8 different DGPs

» e.g. marketing, personalized medicine, etc.

» PEHE equally weights all users, so potential to do better for targeting P 8 different combinations of functions, one for tau (tfreatment effect), one for mu (baseline

applications response).
» All have random assignment

» 100 bootstraps
R-Loss does a good job of predicting PEHE

» Gaps exist between practitioners and literature

» Recent literature on improvements over R-Loss, but complicated

» Most open-source libraries for HTE models use AUUC or R-Loss DGP 2 (PEHE) DGP 4 (PEHE) DGP 8 (PEHE)
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» Data from a Lyft incentive experiment
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» 174K observations, split evenly between treatment and control
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g V » Two outcomes (gain and cost), 49 features
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37 » 100 bootstraps
Spearman's Rank-Order » Define "ground truth” as OPE estimate of profit-max allocation
Out d truth » multiplier x gain — cost > 0
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(9 ) OPE is much better on real data
. . . . Real Data (OPE Max Profit)
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